Eau tarie Posté(e) le 20 janvier 2019 Share Posté(e) le 20 janvier 2019 Il y a 4 heures, BPCs a dit : La firme Krossblade a aussi dans ses projets un hybride avion/voiture, le skycruiser, qui rétracterait ses rotors et ses ailes pour la route . Le film you tube montre bien la rétraction des rotors dans le fuselage : L Donc l'avion, il doit se braquer : la masse d'un véhicule roulant la masse d'un quadcopter de taille honorable. Et la masse pour tout le mécanisme pour rétracter toute la quincallerie. Et ce que j'aime par dessus tout, c'est le graph de rendement de poussée proportionnel à la taille de l'hélice,.... et sans trembler quelques secondes plus tard, les mecs t'assurent la poussée du bouzinga avec 2 hélices de ventilateurs à l'arrière. 2 Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 20 janvier 2019 Auteur Share Posté(e) le 20 janvier 2019 (modifié) Il y a 3 heures, Eau tarie a dit : Donc l'avion, il doit se braquer : la masse d'un véhicule roulant la masse d'un quadcopter de taille honorable. Et la masse pour tout le mécanisme pour rétracter toute la quincallerie. Bah! Tous ces hybrides avion/auto font face à une double contrainte antinomique : Une logique de légèreté max pour un avion et une logique de sécurité minimale pour une auto... D'ailleurs leur concept Skycruiser a déjà 4 à 5 ans et ne semble pas avoir été actualisé à la différence de leur microdrone qui en est à sa deuxième version, Donc on oublie la fonction voiture... Par contre si on questionne sur un UCAV Furtif VTOL, leur système de quadcopter à rotor rétractable me semble avoir l'avantage de déplacer l'aire de rotation des rotors en dehors de la structure de l'avion : Le projet Lockheed Various avait ses Fans dans les ailes ce qui entraînait plus de volume interne perdu. Il y a 3 heures, Eau tarie a dit : Et ce que j'aime par dessus tout, c'est le graph de rendement de poussée proportionnel à la taille de l'hélice,.... et sans trembler quelques secondes plus tard, les mecs t'assurent la poussée du bouzinga avec 2 hélices de ventilateurs à l'arrière. Par contre, il m'a semblé que le graphe de poussée proportionnelle à la taille de l'hélice concerne le rotor tournant lentement tandis que les petites hélices tournant vite sont préférable pour la poussée à grande vitesse... Mais bon cela fait quand même ventilateurs les petites hélices arrières Modifié le 20 janvier 2019 par BPCs Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 13 mars 2019 Auteur Share Posté(e) le 13 mars 2019 Un brevet norvégien de Mid air arrest https://geminiresearchnews.com/2019/03/drones-catching-drones/ En quelque sortes la version dronisée du MARS avec deux UAV multicopter accrochant un UAV à aile fixe, mais avec un crochet descendant de dessous du drone à récupérer au lieu d'être maintenu au dessus par le parachute de freinage , ce qui semble pourtant plus logique quand on a affaire à un drone un peu lourd. Lien vers le commentaire Partager sur d’autres sites More sharing options...
Philippe Top-Force Posté(e) le 22 mars 2019 Share Posté(e) le 22 mars 2019 Bon ce n'est pas un drone à voilures fixes. Mais je le place ici 2 Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 4 avril 2019 Auteur Share Posté(e) le 4 avril 2019 (modifié) Le 07/06/2018 à 00:18, BPCs a dit : Le Patroller a l'avantage d'avoir une autonomie de 20h Versus 10h pour le VSR-700. Et une charge utile presque doublée.. A noter que sa base de monoplaneur rend ses ailes facilement démontables. Un brevet qui permettrait de lancer un patroller ou un pseudolite comme le zéphyr sans devoir recourir à un couteux et rare helico : https://patents.google.com/patent/US6874729 A noter que la darpa a testé un parafoil sur navire dans le cadre du projet Talon, ce qui est déjà là première phase de ce concept : mettre une charge en l'air à partir d'un navire. Modifié le 5 avril 2019 par BPCs Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 5 avril 2019 Auteur Share Posté(e) le 5 avril 2019 (modifié) Un article (alléchant ?) sur le Mid Air Retrieval, qui estime la masse récupérable par cette technique : Jusqu'à 80% de la masse sous élingues Et une masse théorique jusqu'à 22000 lb soit quasi 10t. Modifié le 28 décembre 2020 par BPCs Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 16 avril 2019 Auteur Share Posté(e) le 16 avril 2019 (modifié) Le besoin de récupération d'UAV à voilure fixe est légitimé par le concept de létalité distribuée (cf fil "Frappeur de René Loire / Arsenal Ship" ) : Citation Citation https://www.usni.org/magazines/proceedings/2015/january/distributed-lethality Persistent organic airborne intelligence/surveillance/reconnaissance and data relay. An important aspect of distributed lethality is the ability to confidently conduct dispersed operations apart from centralized command-and-control networks. Local combat-information networks are essential to achieving localized battlespace awareness. Those networks need to be more capable than those existing today and must be persistent in a satellite-denied or jamming-intensive environment. Whether current vertical-takeoff unmanned aerial systems have the persistence necessary to support dispersed offensive operations remains to be seen, but the potential for them to augment networking and information-sharing should be examined. The ability of hunter-killer SAGs to launch and recover fixed-wing or partially fixed-wing UAVs will be pivotal to employing UAVs in this role. Modifié le 16 avril 2019 par BPCs Lien vers le commentaire Partager sur d’autres sites More sharing options...
true_cricket Posté(e) le 16 avril 2019 Share Posté(e) le 16 avril 2019 Il y a 2 heures, BPCs a dit : Le besoin de récupération d'UAV à voilure fixe est légitimé par le concept de létalité distribuée (cf fil "Frappeur de René Loire / Arsenal Ship" ) : An important aspect of distributed lethality is the ability to confidently conduct dispersed operations apart from centralized command-and-control networks. Local combat-information networks are essential to achieving localized battlespace awareness. Those networks need to be more capable than those existing today and must be persistent in a satellite-denied or jamming-intensive environment. Whether current vertical-takeoff unmanned aerial systems have the persistence necessary to support dispersed offensive operations remains to be seen, but the potential for them to augment networking and information-sharing should be examined. La première partie de la citation est claire. Mais je ne vois pas le rapport avec la seconde partie, qui jette comme solution à la question la réponse des drones aériens à décollage vertical. Sans rien pour montrer que c'est cette solution technologique qui répond au besoin, quand bien même ce besoin se limiterai au "Persistent organic airborne intelligence/surveillance/reconnaissance and data relay. " Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 16 avril 2019 Auteur Share Posté(e) le 16 avril 2019 Il y a 1 heure, true_cricket a dit : La première partie de la citation est claire. Mais je ne vois pas le rapport avec la seconde partie, qui jette comme solution à la question la réponse des drones aériens à décollage vertical. Sans rien pour montrer que c'est cette solution technologique qui répond au besoin, quand bien même ce besoin se limiterai au "Persistent organic airborne intelligence/surveillance/reconnaissance and data relay. " La seconde partie de la citation fait écho aux programmes en cours, TERN et V247 Vigilant, développés pour doter les navires de surfaces sans pont plat, d'une capacité d'ISR suffisamment endurante et capable.Avec probablement un faible pour le TERN qui est plus "fixed Wings" que le Vigilant. Citation Whether current vertical-takeoff unmanned aerial systems have the persistence necessary to support dispersed offensive operations re mains to be seen, but the potential for them to augment networking and information-sharing should be examined. The ability of hunter -k iller SAGs to launch and recover fixed-wing or partially fix ed-wing UAVs will be pivotal to employing UAVs in this role. Ceci dit la citation parle d'examiner la place de ces drones dans la réponse à cette question d'action autonome des groupes Hunter-killer de navires de surface sans affirmer que c'en est la réponse unique et/ou suffisante : On pense ainsi/aussi aux pseudolites tels le zéphyr d'airbus ou le stratobus de Thales. Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 17 août 2019 Auteur Share Posté(e) le 17 août 2019 (modifié) Une autre forme de récupération de cruise missile (à nouveau d'actualité avec la palanquée de Remote Carrier du SCAF) : la récupération à la mer : Et comme un RC/cruise missile, cela ressemble furieusement à un UUV, on pourrait envisager un retour au bateau mère via une adaptation de l'Inspector 120 d'ECA, drone de récupération prévu pour le système de guerre des mines du futur : Ce drone a une capacité d'opérer jusqu'à un SS4-5 Références : https://commons.m.wikimedia.org/wiki/File:SEA_LAUNCHED_CRUISE_MISSILE_RECOVERY_SYSTEM_SEQUENCE.svg http://navyrecognition.com/index.php/news/defence-news/2018/october-2018-navy-naval-defense-news/6537-eca-group-unveils-new-inspector-120-12-meters-usv-for-mcm.html Avec un design adapté comme pourrait l'être celui des futures type 31 Gibi, il serait possible de récupérer 4 drones à la fois : Si le turn-over est proche des 3h nécessaires pour remettre une target drone mirach 100/5 * en état d'être retirée, cela permettrait 32 tirs de RC par jour pour une frégate de structure architecturale "conventionnelle" http://www.aiad.it/aiad_res/cms/documents/SELEXGALILEOMirach1005AerialTargetSystem.pdf Modifié le 16 février 2020 par BPCs Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 1 septembre 2019 Auteur Share Posté(e) le 1 septembre 2019 (modifié) Un système pour récupérer des UAV à voilure fixe jusqu'à 3000 lbs soit 1,36 t sur des small surface combatant par un constructeur (sérieux, déjà sélectionné pour le système Gremlins) et qui propose déjà un système pour UAV jusqu'à 600lbs, le Seacatcher : http://atrcorp.com/landr_uavs.html Citation Our UAV launch and recovery system technology for manned and unmanned aerial vehicles enhances safety and reliability. Over the past decade, ATR has participated in several projects funded by ONR and DARPA to develop and demonstrate this technology, which included the ATR patented SeaCatcher system for runway-free and shipboard UAV recovery. The SeaCatcher relies on automatic ship motion compensation and can recover UAVs weighing up to 600 lbs. ATR is currently participating in the DARPA Gremlins program, developing a system that enables launch and recovery of a swarm of fixed-wing UAVs from and to a C-130 aircraft. Recent Government sponsored R&D projects: DARPA BAA (15-59), Gremlins, where ATR has supported the Prime Contractor and developed the launch & recovery subsystem for a swarm of fixed-wing UAVs from and to a C-130 aircraft. DARPA BAAs (08-031, 10-09), SeaCatcher, where ATR developed an innovative solution for launching and recovering fixed-wing UAVs from small surface combatant by active motion compensation of the host vessel. DARPA BAA (06-15), Large Fixed-Wing UAV Launch and Recovery System for Small Surface Combatants, where ATR developed a concept of shipboard launch and recovery of fixed-wing UAVs up to 3,000lbs. 1,36 t c'est un Patroller par exemple ! Et on peut se dire qu'on ne sera pas loin de la masse à vide du RC lourd d'Airbus Par contre je n'ai pas trouvé de description du système plus précise... Modifié le 1 septembre 2019 par BPCs Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 6 octobre 2019 Auteur Share Posté(e) le 6 octobre 2019 (modifié) Le brevet de l'UAV Cormorant de LM Ce projet de drone, de 5,8 m de long, lançable par un silo de Sous-marin en immersion pouvait être aussi utilisé sur un navire de surface en le balançant à la mer et en décollant tel un hydravion grâce à des fusées jetables. La récupération se serait faite dans l'eau via une grue. https://patents.google.com/patent/US7097136B2/en?q=cruise+missile&q=recovery&oq=+cruise+missile+recovery+ https://web.archive.org/web/20071007053407/http://www.darpa.mil/tto/programs/cormorant.htm Modifié le 16 février 2020 par BPCs 1 Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 16 février 2020 Auteur Share Posté(e) le 16 février 2020 Une vidéo montrant la mise en place du système de catapulte Aurora Sidearm sur le flightdeck d'un DDG51 : Lien vers le commentaire Partager sur d’autres sites More sharing options...
LBP Posté(e) le 16 février 2020 Share Posté(e) le 16 février 2020 Il y a 4 heures, BPCs a dit : Une vidéo montrant la mise en place du système de catapulte Aurora Sidearm sur le flightdeck d'un DDG51 : intéressant mais le chariot est un peu complexe. Il faudrait une installation fixe sur les cotés (deux). Lien vers le commentaire Partager sur d’autres sites More sharing options...
Umbria Posté(e) le 16 février 2020 Share Posté(e) le 16 février 2020 Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 16 février 2020 Auteur Share Posté(e) le 16 février 2020 (modifié) Il y a 21 heures, LBP a dit : intéressant mais le chariot est un peu complexe. Il faudrait une installation fixe sur les cotés (deux). Tu prêches un convaincu ! Car en plus d'une simplification du processus cela permettrait probablement d'avoir un système plus long ce qui ouvrirait la porte à la récupération d'UAV plus gros que les 400 kg tolérés mais surtout plus rapide. Or le Graal serait justement la récupération de drone stealth comme par exemple le X-61A Gremlins qui du fait de leur réacteur et leurs ailes non optimisées pour les basses vitesses, n'auront pas une vitesse d'approche basse... ... mais auront un crochet de récupération sur le dos Question positionnement cela pourrait donner un système plus haut placé comme proposé pour les skyhook. Voire comme pour le Brodie Landing system ( voir post page précédente). Modifié le 17 février 2020 par BPCs 1 1 Lien vers le commentaire Partager sur d’autres sites More sharing options...
true_cricket Posté(e) le 18 février 2020 Share Posté(e) le 18 février 2020 A tester par mer formée tout ça. Ca m'a l'air un peu scabreux pour l'instant. Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 23 février 2020 Auteur Share Posté(e) le 23 février 2020 (modifié) Le 18/02/2020 à 12:10, true_cricket a dit : A tester par mer formée tout ça. Ca m'a l'air un peu scabreux pour l'instant. Les grues embarquées (donc pourquoi pas ce side-arm) ont des corrections de position en fonction des mouvements du navire. Mais cela fonctionne jusqu'à quel état de la mer ??? Ceci dit il semblerait plus logique qu'un tel système soit parallèle à l'axe du navire (comme le Brodie Landing system) si on veut pouvoir corriger un tant soit peu les mouvements de tangage du navire... Modifié le 24 février 2020 par BPCs Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 10 avril 2020 Auteur Share Posté(e) le 10 avril 2020 Le 03/06/2018 à 21:24, BPCs a dit : C'est paradoxalement la phase de récupération la mieux validee par l'expérience : Cela correspond au MARS : Mid Air Recovery System Cela a été employé pour récupérer les drones firebee pendant la guerre du Vietnam avec un taux de succès de près de 96% http://docplayer.net/46838807-Introduction-to-uav-systems.html page 267 De puis ce principe a été proposé pour récupérer des élément de fusee sous réserve que l'helico ait une capacité d'emport sous élingue suffisant il y a eu le projet monstrueux de Hiller helicopter pour Saturn V (sans suite...) : http://www.thespacereview.com/article/1045/1 et les russes avaient envisagé d'utiliser un Mi-26 pour récupérer un élément de leur lanceur lourd (je ne trouve plus le lien). Une essai d'application tout récent du Mid Air Recovery à la récupération d'élément de fusée Lien vers le commentaire Partager sur d’autres sites More sharing options...
Bechar06 Posté(e) le 20 novembre 2020 Share Posté(e) le 20 novembre 2020 Le 03/06/2018 à 12:54, LBP a dit : V-BAT continue son chemin ... sur MER ... https://www.janes.com/defence-news/news-detail/martin-uav-developing-new-v-bat-unmanned-aircraft Martin UAV has provided the V-Bat to the US Army for its Future Tactical Unmanned Aerial System (FTUAS) demonstration. The V-Bat also recently demonstrated shipboard integration in support of a US Southern Command (SOUTHCOM) counter narcotics mission off the coasts of Central America and northern South America from October 2019-July 2020. Niemi said this SOUTHCOM mission, in which the V-Bat flew 273 sorties over 1,341 flight hours, was the first operational deployment of the V-Bat and demonstrated a unique maritime niche for the aircraft. The V-Bat can autonomously turn into winds, which Niemi said is critical for shipborne operations as winds shift constantly. 1 Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 28 décembre 2020 Auteur Share Posté(e) le 28 décembre 2020 (modifié) Le 05/04/2019 à 06:58, BPCs a dit : Un article (alléchant ?) sur le Mid Air Retrieval, qui estime la masse récupérable par cette technique : Jusqu'à 80% de la masse sous élingues Et une masse théorique jusqu'à 22000 lb soit quasi 10t. Concernant le Mid Air Retrieval System, cet autre article postule que la récupération de charge par HLO pourrait monter jusqu'à 26000 lb soit presque 12t, vu que l'utilisation de parafoil permet une meilleure stabilité du vol : Citation In The Past, Present, and Future of Mid-Air Retrieval (AIAA-2005-1673), the conclusion states that “it is conceivable that 3GMAR can be used to safely, reliably, and economically recover high-value payloads of up to 22,000 lb.” With today’s parafoil technology, recovery of up to 26,000 lbs is technically possible. http://selenianboondocks.com/wp-content/uploads/2008/09/partial-rocket-reuse-using-mid-air-recover-space-2008-072908.doc Révélation Partial Rocket Reuse Using Mid-Air Recovery Mari Gravlee, Bernard Kutter, Frank Zegler, Brooke Mosley United Launch Alliance Denver, CO Roy A. Haggard Vertigo Lake Elsinore, CA Finding rocket launch cost-reduction opportunities is becoming increasingly necessary in the current market environment due to projected US government budget cuts for space. United Launch Alliance (ULA) is pursuing numerous cost reduction initiatives, one of the more promising concepts being the reuse of the Atlas rocket booster’s RD-180 engine. The RD-180 is derived from the reusable RD-170 engine and retains the ability to support multiple missions, offering the opportunity to reduce costs over a series of launches. Reusability of the Russian-built RD-180 also reduces the dependency on foreign hardware deliveries. Many schemes for engine recovery have been considered in the past. Flyback boosters suffer from huge non-recurring cost and large performance impact. Parachute recovery of an engine module to the ocean suffers from high-impact G loading and exposure to harsh ocean environments which require a complex system to fully seal off the engine. ULA is investigating recovery of EELV engine modules, with an initial focus on the Atlas V’s RD-180 engine. Using helicopter mid-air recovery as the engine module descends under a parafoil is a low-development-cost approach which brings back the booster engine with exposure to only benign environments. Four elements are key in recovering the RD-180 after booster jettison – upgrading the booster to allow separation of the engine module from the tanks, designing both hypersonic and subsonic decelerators, and developing a helicopter mid-air recovery system with increased performance. To date the efforts have been focused on the subsonic parafoil and helicopter mid-air recovery system. A subscale system has been designed and tested to recover 750 lbs, with the intent to be scaled up to support the RD-180 recovery weight of 25,000 lbs. Components integral to the system are a helicopter, a steerable aerodynamic remote-controlled grapple, and a parafoil with stable drogue line attached to the engine module. This paper outlines a system in development that can realize the cost and technological advantages of reusing high value elements of the launch vehicle, namely the booster aft thrust structure (ATS) containing the engine and other hardware. History of Launch Vehicle Reuse M any people assume that fully or partially reusable launch vehicles will result in a significant reduction in the cost of space access. Over the years many methods to reuse rockets have been proposed and pursued. Fly-back boosters were considered during early trades leading to the Space Shuttle, Figure 1. In the 1990’s Lockheed Martin and NASA pursued the fully reusable, single stage to orbit (SSTO) X-33, Figure 2. Both Boeing and General Dynamics were studying water recovery of the booster engine module during the Advanced Launch System (ALS) development. Numerous other methods of recovery and reuse have also been considered. Many of these studies showed reusability to only make sense at extremely high launch rates, for example 50 flights per year. Figure 1 Reusable fly back booster concept considered during shuttle development, Credit NASA Figure 2 Fully reusable, single stage to orbit X-33 Concept pursued by Lockheed Martin and NASA. Credit NASA Many early shuttle concepts included fully-reusable boosters and orbiters that carried all of the propellant within the fuselage. Wings were either stowed during ascent and deployed for reentry or fixed outside the fuselage for both ascent and reentry. Wings severely detract from performance due to their weight, and wings fixed outside the fuselage impart huge lateral loads into the fuselage during ascent due to high dynamic pressure. The reusable fly back booster concept was eventually eliminated partially due to development costs, leaving the current Shuttle system with a reusable SRB, expendable propellant tank, and a reusable orbiter. The large refurbishment effort required prior to each shuttle flight has resulted in questionable cost effectiveness of reusing this hardware. Fully reusable SSTO has been the holy grail for many space enthusiasts. The National Aerospace Plane (NASP) program funded by the US government in the late 80s and early 90s pursued the development of a craft known as the X-30, whose concept utilized bimodal air breathing rocket engines to overcome the harsh physics of reaching space. The VentureStar program funded by Lockheed Martin and NASA in the late 90s, with demonstration prototype dubbed the X-33, was intended to achieve SSTO using more near-term technologies than NASP. VentureStar would take off vertically like a rocket, land horizontally like an airplane, and have airplane-like refurbishment resulting in one-tenth of the recurring cost of the space shuttle. Initial concepts required extremely challenging mass fractions and relied on immature technologies such as lightweight composite hydrogen fuel tanks, which unfortunately could not be developed in the slated budget. The program was cancelled in 2001 after 5 years in development. In an effort to realize the benefit of reusability at realistic launch rates, developers have considered partial rocket reuse. These studies primarily have focused on reuse of the booster engine since it typically represents the single most costly element. ALS planned on separating the engine module and using parachutes to “soft” land the engine in the ocean for recovery, using inflatable protective covers to minimize damage of sensitive hardware by the harsh sea salt environment. However, the high impact loads and likely environment-induced degradation made the magnitude of refurbishment extensive, likely more costly than a new engine. ULA’s focus on reusability parallels the ALS development, focusing on limited reuse of the high-value components using realistic flight rates of around 10 missions per year. The key enhancement to the ALS concept is mid-air recovery of the engine module to eliminate impact loads and avoid any chance of sea water contamination. The goal is to ensure that the environment experienced during flight are similar to what the engine already experiences during hot fire, simplifying the required maintenance between flights which is critical to realizing the potential cost savings. Figure 3 Reuse of the RD-180 can offer savings even if the engine is only used twice. Using the engine 3 times appears to provide maximum savings without pushing the engine into extreme run times. Benefits of Engine Reuse Rocket engines with especially robust designs are made up of components that can handle runtime durations well beyond that required for a single rocket launch. With a potential increase in launch demand for EELV-sized rockets, engine production rate can become a limiting factor. The ability to reuse rocket engines can support double or even triple launch capacity of current engine production capabilities, and the resulting decrease in launch cost could make reliable space flight more affordable. The benefits of engine reuse have specifically been analyzed with respect to the Atlas V EELV’s RD-180 engine. The cost savings for RD-180 engine reuse is projected to be realized in 2 flights, as shown in Figure 3. While previous partial reuse systems were potentially non-cost effective due to g loads where the engine impacted the ground or water, current development of a 3rd generation of mid-air recovery mitigates those g loads. This paper outlines a system in development that can realize the cost and technological advantages of reusing high value elements of the launch vehicle, namely the booster aft thrust section (ATS) containing the engine and other hardware. The minimal refurbishment required to reuse the ATS after being acquired in the air and gently retrieved to the surface allows booster engine reuse to be cost effective. It also facilitates inspection of the rocket engine after flight use, which has not yet been possible with the RD-180. Engine Reuse Overview ULA’s approach to recovery and reuse of the RD-180 is summarized in Figure 4. This approach balances existing technology, realistic flight rates, and operational robustness to enable cost effective recovery and reuse of the RD-180. The propellant tanks of the booster are large, fragile, and heavy, and only represent about 1/10 the total cost of booster. Therefore, ULA only intends to retrieve the aft end of the booster, Figure 5. The engine module with the adjacent Aft Transition Structure (ATS) weighs approximately 25,000 lb – well within demonstrated parafoil recovery capability. It is compact, strongly built, and can be readily severed from the remainder of the booster. The Aft Thrust Structure will be modified to ease separation and reintegration by adding a flange at the separation plane above the ATS structure to allow the ATS-to-tank interface to be preserved during separation. A flange at the separation plane will prevent the ordnance from cutting the tank which would allow propellant to escape and contaminate the engine. Figure 4 ULA’s concept of reuse operations enable benign separation and recovery environments to make engine reuse cost effective to implement Figure 5 The ATS will be severed from the booster, enabling recovery of the ATS. Figure 6 A hypercone is used to decelerate the ATS at hypersonic speeds After the ATS is separated from the booster tank structure, it will be decelerated with a hypercone in the upper atmosphere, Figure 6. The hypercone provides a moderate deceleration profile to minimize potential damage to the engine. Figure 7 shows the booster altitude nearing about 800,000 ft before commencing its descent. As the ATS descends through 400,000 ft, drag on the hypercone becomes noticeable. Hypercones were originally conceptualized for decelerating large payloads at Mars but will function equally well in the Earth’s upper atmosphere. The hypercone’s shape, high-strength fiber structure, and inflatable torus backbone will permit the gradual deceleration of the ATS and protect it from intense aeroheating. Despite its low weight, the hypercone design creates very high drag under high Mach and micro-pressure conditions where other devices are ineffective. It will be jettisoned once in the lower atmosphere. To continue deceleration, a ringslot parachute deployment may be utilized until low subsonic velocity is achieved. The chute is released and a parafoil with a trailing drogue line and internal GPS system, Figure 8, inflates above the ATS and steers toward the target area for helicopter intercept. A self-guided parafoil that can currently handle the 25,000 lb load is Airborne Systems’ MegaFly parafoil. The MegaFly is designed to carry 30,000 lbs of cargo and can fly autonomously via GPS guidance for distances up to 40 kilometers to a designated point. When the descending parafoil-borne ATS location is determined, the helicopter and the ATS fly a cooperative intercept trajectory. Once the MAR helicopter is within visual range of the ATS, it approaches the parafoil, moving into a trailing formation where the grapple suspended below the helicopter is overlapping the ATS drogue capture line. The grappling hook is steered toward the drogue line for engagement. Figure 7 Altitude vs. down range distance, Atlas V 401, 750,000 ft max nominal altitude Figure 8 Ringslot chute may be used during transonic flight. Parafoil with drogue is used to fly in formation with helicopter until intercept is complete. Once the grappling hook has engaged and captured the drogue line, the helicopter ascends and moves forward until the drogue-payload suspension line strips away from the parafoil. When the required tension load is achieved, the parafoil is released through the actuation of pyrotechnic cutters. This method provides smooth transfer of tension loads, minimal suspended payload drag during ferry under the helicopter, and eliminates the difficulty of managing the payload and the very large parafoil in the downwash of the helicopter during payload set down. When the MAR is completed, the helicopter ferries the ATS as a suspended load to a benign recovery environment, such as to land or a barge. The ATS remains dry, and the setdown method is virtually zero impact, minimizing engine refurbishment scope and cost. 3rd generation MAR allows the helicopter to lift 80% of it’s underslung capacity due to near-zero relative velocity between the helicopter and payload and the use of a parafoil instead of a parachute. The helicopter that is best suited to handle the load requirement of 25000 lbs with a transfer load of up to 1.2g’s is the Sikorsky Super Stallion CH-53E (36,000-lb underslung load capability). Typical Trajectory Parameters Figure 9 The Atlas V 401 ATS would be recovered northeast of Puerto Rico. Figure 10 Anticipated impact ellipses for the Atlas 401 ATS There are many factors to be considered in developing booster engine recovery parameters. In a flight using the Atlas V 401 configuration (which is the most common type of Atlas flown), the booster conveniently lands northeast of Puerto Rico, shown in Figure 9, allowing for a timely retrieval. However, more powerful trajectories of other configurations of Atlas may land the booster nearer to Africa than the US, reducing the cost-effectiveness and increasing the logistical complexity of recovery. Timing engine usage such that engines on their 3rd (and last) flight are flown on the more powerful versions of Atlas provides the greatest operational efficiency. Figure 10 shows the calculated reentry ellipses for an Atlas 401 ATS. The red ellipses provide the 3-sigma impact area helicopters must stay clear of until the actual flight path of the booster is known at booster/ Centaur seperation (~4 min after liftoff). The yellow ellipse provides the ATS 3-sigma impact area. The green ellipse shows where an intact booster is expected to reach sea level 15 minutes after launch. History of Mid-Air Recovery. Mid-Air recovery (MAR) has been developed for many different purposes over the last 50 years, including the retrieval of unmanned air vehicles and air-launched cruise missiles. The first-generation of MAR utilized multiple engagement hooks attached to poles below aircraft. The hooks were connected to a special constant-tension winch that decreased loads and oscillation between the helicopter and payload by paying out line at a pre-set tension, generally about 1.25 times the weight of the payload. The payload floated beneath a round parachute, which, due to the round parachute’s static nature, had to be hit accurately just as the aircraft flew through the wake of the parachute. Second-generation MAR upgraded to the use of a parafoil system that allowed the intercepting aircraft to fly in formation with the payload. Parafoils are designed to fly along a relatively straight path, facilitating a more controlled and smoother retrieval than round parachutes that hover in an unstable downward float. 3rd generation MAR improves on 2nd generation MAR with the addition of a trailing suspension line connected directly to the supported payload. This allows much heavier loads to be captured, limited by the helicopter performance. In 2005 the Atlas program partnered with Vertigo, Inc to demonstrate 3rd level MAR, capturing a ~200 lb person. ULA is continuing this partnership to pursue component development for 3rd generation MAR, with the goal to eventually enable the capture of the 25,000 lb ATS. In 2007, ULA and Vertigo partnered to conduct two tests – the MAR of a 750-lb pod, demonstrating higher capture mass and transition load, and the MAR of a skydiver with an improved remote-controlled grapple hook. Figure 11 C119 MAR near Hawaii: 1st generation MAR Figure 12 Tandem Parafoil MAR 1990: 2nd generation MAR Figure 13 3rd generation MAR MAR in the latest tested configuration includes a parafoil with trailing Tri-lobe drogue for maximum stability and minimal drag surfaces. A cable beneath the helicopter suspends the steerable grappling hook that utilizes remote-controlled surfaces to engage and secure the drogue line. The basic grappling hook, facilitated by a liner actuator, is outlined in the paper, The Past, Present , and Future of Mid-Air Retrieval (AIAA 2005-1673). For most recent testing in November 2007 and January 2008, it was upgraded to handle the 750-lb load, and aerodynamic, steerable surfaces were formed around it to lessen capture time of the drogue line. In The Past, Present, and Future of Mid-Air Retrieval (AIAA-2005-1673), the conclusion states that “it is conceivable that 3GMAR can be used to safely, reliably, and economically recover high-value payloads of up to 22,000 lb.” With today’s parafoil technology, recovery of up to 26,000 lbs is technically possible. Most Recent 3GMAR Testing The design of the grappling hook has been through much iteration. The linear-actuating hook from early 3rd generation MAR has most recently been mounted to an aerodynamic “fish” design, whose back “fins” can be remote controlled from the helicopter to eliminate the pendulum effect of the hanging weight below the helicopter. In November 2007, United Launch Alliance contracted with Vertigo to demonstrate the mid-air capture of a 750-lb pod, 550 lbs heavier than the last MAR demonstration load. Tests were performed near California City, California, Figure 14. The pod with the parafoil stowed inside it was attached to the grapple hook assembly and carried to altitude by an Astar 350B2 helicopter. It was released, and subsequently captured using a grapple hook without aerodynamic surfaces. Figure 14 Test – November 2007 Figure 15 Test – January 2008 Force data was acquired by examination of the energy attenuation incremental bridle system. The incremental bridle consisted of multiple legs of webbing sewn to each other with carefully sized bar-tack stitches. There were two sets of legs that provided two distinct levels of energy absorption. The first set provided a breaking force of 990 lbf for 10 feet. The second set provided 1,980 lbf for the next 10 feet of tear-out. The primary purpose of the incremental bridle was to act as a force limiter between the suspended load and the helicopter in the event of an overload condition, but because inspection showed that no bar tacks were broken, and none showed signs of significant stress, we can determine that the forces involved in the MAR were less than the measured breaking force of the bar tacks in the first leg of the incremental bridle (this method of data determination was used due to a malfunction of the electronic data acquisition system). The grapple and cargo capsule combined weight was 822 lbs. (70 and 752 lbs. respectively). Therefore, 990/822 equals 1.2 G’s acceleration. Even without the force-time history record, the backup data established a very low dynamic load factor during the MAR pickup. In January 2008, United Launch Alliance contracted with Vertigo to demonstrate the mid-air capture of a skydiver using a newly developed remote-control grappling hook, Figure 15. Tests were performed over Lake Elsinore in Lake Elsinore, California. The sky-diver jumped from a second helicopter (previous test revealed that skydiver jumping from helicopter that held the grapple was not ideal due to skydiver initial altitude loss). The skydiver’s parafoil, a PD Sabre 150, held an 80-foot drogue line. The grapple hook with aerodynamic surfaces and remote-controlled steering, Figure 16, was suspended beneath the helicopter and engaged the drogue line extending from the top of the parafoil. With the remote-controlled grapple, engagement was significantly improved, allowing recovery to be completed on the first pass. Figure 16 Grappling hook in open and closed positions Figure 17 RD-180 Hot Fire Details of Refurbishment. ULA’s initial focus for engine recovery is on the Atlas V’s RD-180, whose predecessor the RD-170 was qualified for 10 man-rated flights. If reuse is proven to be cost effective on the Atlas program ULA also plans to pursue recovery and reuse of Delta’s RS68. As a 2-chamber derivative of the 4-chamber RD-170, the RD-180 uses 70% of the same flight proven components from the RD-1705. The remaining 30% are scaled versions of RD-170 components, and individual parts of the RD-180 have been tested to reusable levels, although full certification of the RD-180 for reuse has never been funded. Customer requirements dictate that the engine be flown at a 4:1 ratio of certified runtime to flight time. The chamber of the RD-180 went through 21 test firings with a combined time of 4,000 seconds6, the time equivalent of about 15 flights. The certification engine as a whole was tested 5 times, accumulating 1,024 seconds of runtime5. A standard production engine undergoes a 200-second acceptance test and up to 270 seconds of runtime per flight. Therefore, if each engine was certified to be reused twice (for a total of 3 flights), the certified runtime will need to be extended to 4,040 seconds to comply with customer requirements. To protect the components of the engine during recovery, safeguards can be added to the airborne engine shutdown sequence for contamination control, equivalent to that employed during ground testing. The onboard residual helium supply would be augmented to supply purges to close the fuel inlet valve and the preburner inlet valve prior to separation. Propellant ducts and engine bells would be sealed with airbag-style closures. Many of these techniques were shown effective during prior efforts to prevent seawater entry during a recovery with a water landing. Smaller fluid connections would be sealed with traditional disconnects. Effectively the same processes used to safe the engine following hotfire testing would be imposed prior to atmospheric entry. Following recovery, the engine would need to be secured. Securing would be focused on preventing possible damage due to changing internal or external engine environments, and preventing external contamination. All engine interfaces would be plugged and internal purges would prevent contamination during transportation. To verify the engine was suitable for reuse, operations would be similar to the processes currently in place for engine post-abort processing. The engine would undergo a series of hydrocarbon mitigation procedures to rid the engine of hydrocarbons accrued during flight. The current procedure for an engine post-ignition abort involves a series of heated nitrogen purges applied to various ports on the engine via the Hot Gas Ducts followed by vacuuming. A post-flight version of this procedure may need to be more substantial. The refurbishment would be facilitated by a borescope inspection of the turbine blades, preburner faceplate, and injector. Normal functional testing that follows an engine acceptance test would also be required. Standard testing includes: engine integrated pneumatic testing, engine installed electrical tests, Failure Response System verification, and engine hydraulic operations. These evaluations allow the engine to be qualified for reflight without an engine removal, breakdown, and rebuild. Once flight data review, inspections, and testing determined that the engine to be reused was in healthy working condition, the engine (still mounted in the original thrust structure) would be mated to a new booster tank. A critical feature of this process is that the condition of the engine after flight can be documented and a database of the condition of critical elements could be built. The exact performance level of any particular engine would be known based on actual flight and not simply acceptance testing. As-installed component wear and performance data, so common to aircraft operations, would begin to be established for a high-thrust booster engine without resorting to costly high-duration hotfire tests. In essence a dynamic process combining flight and ground testing for evolving the engine towards an even higher reliability state would be enabled based on real-world flight environments. With a proven non-detrimental recovery system it may be perceived that flight on the second or third flights of a given engine represent the least risk. Launch Architecture Effects The present strategy for minimizing launch costs is to effectively saturate the launcher performance capability either by adding solid rocket boosters to match the payload weight or by combining payloads to match a fixed launch vehicle capability. The existence of low cost tankage and a cost effective reuse of high value engines and other components suggests an alternative strategy. Depending on the launch rate, manifest mix, payload mass, relative cost, and number of solid rocket motors, it may well be less costly to simply fly heavy payloads on a vehicle similar in configuration to the Delta HLV with large performance excess. This performance excess could enable rideshare opportunities or allow improved orbital insertion such as reduced inclination, that can extend the satellite life. Obviously with two LRB’s the recovery process yields two engines per sortie with the energy state of the two liquid rocket booster engines being relatively low- resulting in a shorter downrange distance to the recovery zone easing recovery. Conclusion. Extensive research has shown that current technologies and market based launch rates do not support the cost-effectiveness of the reuse of a rocket booster in its entirety. However, reuse of the booster’s most costly components appears to be technically viable and cost effective. The booster recovery approach ULA is pursuing achieves the majority of the cost savings of fully reusable flyback booster concepts at a tiny fraction of the non-recurring investment. ULA is pursuing partial rocket engine reuse to achieve numerous goals, which include: (1) producing cost savings at current launch rates, (2) mitigating dependence on foreign engines, (3) enhancing engine reliability through post-flight inspection, and (4) enabling higher rate launch rates without increased engine production rate and associated capital investment. Practical rocket booster engine reuse is achievable by maintaining environments that are benign and avoiding contamination. A benign flight environment is enabled through the use of hypercones to decelerate the engine slowly in the upper atmosphere and 3rd generation Mid-Air Recovery. ULA and Vertigo have demonstrated the benign environments and reliable capture of 3rd generation MAR, which incorporates a combination of lessons learned from the extensive history of MAR systems. Current parafoil and helicopter technology already support the recovery of the 25-000 lb load required. Inflatable hypercone decelerators are already being pursued by NASA LaRC and industry. The next major steps to enable actual engine recovery include: (1) refinement of the hypercone to the specific needs of booster recovery, (2) increasing the demonstrated mass capture of 3rd generation MAR, (3) refinement and demonstration of the RD-180 recertification process, and (4) development of the ATS severance modifications. Acronyms 3GMAR 3rd Generation Mid-Air Recovery ALS Advanced Launch System ATS Aft Transition Structure EELV Evolved Expendable Launch Vehicle LRB Liquid Rocket Booster MAR Mid-Air Recovery NASP National Aerospace Plane SSTO Single Stage To Orbit ULA United Launch Alliance References: Modifié le 28 décembre 2020 par BPCs Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 15 janvier 2021 Auteur Share Posté(e) le 15 janvier 2021 Un système permettant à un UAV Quadcopter d'exécuter quand même sa mission sur 3 moteurs. If one of the motors conks out on a quadcopter drone, the aircraft usually just crashes. Thanks to new research, however, such disabled drones could soon not only remain airborne, but even complete their trip. https://newatlas.com/drones/onboard-cameras-quadcopters-motor-failure/ https://youtu.be/Ww8u0KH7Ugs C'est en apparence HS par rapport à la thématique du fil... sauf si on considère qu'un Mid Air Retrieval System devrait être basé sur des UAV, avec la tendance logique de réutiliser un UAV issu des multiples développements de taxi urbains et autres eVTOL à propulsion électrique Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 31 janvier 2021 Auteur Share Posté(e) le 31 janvier 2021 Le 18/02/2020 à 12:10, true_cricket a dit : A tester par mer formée tout ça. Ca m'a l'air un peu scabreux pour l'instant. Le brevet d'Aurora sur le side arm recovery system parle d'un Sea State 6-7 Citation [0089] As illustrated in Figure 7, the side-arm recovery system 700 may be designed to operate in high sea states (6-7). In oceanography, a sea state is the general condition of the free surface on a large body of water— with respect to wind waves and swell— at a certain location and moment. [0090] The scenario of Figure 7 involves 10 degrees ship roll and 6 degrees ship pitch with waves reaching 8 feet above the nominal sea surface. The crane's 704 sizing criterion may be chosen such that a minimum clearance (e.g., 1 to 40 feet, more preferably 5 to 30 feet, most preferably at least 10 feet) between the inner wingtip of the aerial vehicle 702 and all elements of the ship 702 and crane 704 is required under the most critical conditions. This criterion may be used to determine the lengths of the crane 704 elements for a particular aerial vehicle 702. The overall height of the crane 704 may be determined by allowing sufficient clearance from the outer wingtip to the highest wave height while in a 20-degree roll away from the ship 602. The size of the side-arm recovery system 700 may be driven by ship 702 geometry, ship orientation, wave height, keep-out zones, and aircraft clearance margins from the ship, water, and recovery system structure. https://patents.google.com/patent/WO2013112206A1/en L'autre élément intéressant c'est que le système est aussi applicable, pour les auteurs, à des UAV à réaction Lien vers le commentaire Partager sur d’autres sites More sharing options...
true_cricket Posté(e) le 31 janvier 2021 Share Posté(e) le 31 janvier 2021 Il y a 4 heures, BPCs a dit : Le brevet d'Aurora sur le side arm recovery system parle d'un Sea State 6-7 https://patents.google.com/patent/WO2013112206A1/en La difficulté se trouve bien souvent dans la mise au point, pas dans le calcul et les idées. Alors il faut un démonstrateur. Il y a 4 heures, BPCs a dit : L'autre élément intéressant c'est que le système est aussi applicable, pour les auteurs, à des UAV à réaction Hélice, réaction, en effet je ne vois aucun soucis selon le mode de propulsion. Lien vers le commentaire Partager sur d’autres sites More sharing options...
BPCs Posté(e) le 31 janvier 2021 Auteur Share Posté(e) le 31 janvier 2021 Il y a 4 heures, true_cricket a dit : La difficulté se trouve bien souvent dans la mise au point, pas dans le calcul et les idées. Alors il faut un démonstrateur. C'est un des brevets du Side-Arm d'Aurora déjà en production depuis qq années : j'ai mis cette citation car je n'avais de notion sur l'operabilité en contexte de mer formée. Il y a déjà un démonstrateur en test dont on a des images/vidéo pour le test en laboratoire et le test en version terrestre. https://www.thedrive.com/tech/7445/darpas-new-project-sidearm-snatches-drones-from-the-sky Il y a 4 heures, true_cricket a dit : Hélice, réaction, en effet je ne vois aucun soucis selon le mode de propulsion. Effectivement dans l'absolu mais actuellement, ils ont surtout communiqué sur un drone à hélice jusqu'à 400 kg (de mémoire) : cela veut dire faible vitesse d'approche. Qu'ils mentionnent l'option jet signifie qu'ils pourraient développer une version plus adaptée en taille et structurellement renforcée pour récupérer une bestiole plus lourde et plus rapide comme un X-61A Gremlin, que la Navy pourrait aussi par exemple vouloir déployer. Lien vers le commentaire Partager sur d’autres sites More sharing options...
Messages recommandés
Créer un compte ou se connecter pour commenter
Vous devez être membre afin de pouvoir déposer un commentaire
Créer un compte
Créez un compte sur notre communauté. C’est facile !
Créer un nouveau compteSe connecter
Vous avez déjà un compte ? Connectez-vous ici.
Connectez-vous maintenant