Aller au contenu
Fini la pub... bienvenue à la cagnotte ! ×
AIR-DEFENSE.NET

F-18


AWACS

Messages recommandés

Yoram, tout est relatif, quand le Typhoon aura réglé tous les problemes de jeunesse qu'il peut rencontrer, "cet avion pas si terrible" surclassera sans peine tous les avions du monde à l'exception des F22 et Rafales ( et encore, on ne sait pas ce qu'ils valent vraiment pris chacun l'un contre l'autre)

Lien vers le commentaire
Partager sur d’autres sites

Je dirait méme que c'est pas terrible pour un avion aussi cher! [11] [08] C'est l'jeu ma pauv' lucette, soit tu commande un avion tres cher et pas forcément performant et tu vient au boulo en bentley soit t'achete un avion pas cher et bien (je ne vise aucun avion précisément suivez mon regard [10] ) et un matin par semaine t'appelle ton patron que t'arrive en retard parceque ta R5 a encore griller un allumage! [11]

Lien vers le commentaire
Partager sur d’autres sites

mouais, on va corriger cela: -soit tu achètes un chasseur très cher et pas forcément performant et fiable. Comme il est pas fiable il casse souvent et donc t'as des problèmes. Mais au moins tu peux frimer devant les autres. -soit tu achètes un chasseur pas cher mais pas forcément très fiable. là aussi il casse assez souvent. Mais comme il coutait moins cher tu as pu en acheter 2 donc pas de problèmes. Bon là tu seras la risée mais au moins t'arrivera à l'heure au boulot. siot tu achètes un chasseur pas cher et performant qui tombe moins souvent en panne. Là aussi, tu ne pourras pas frimer, mais tu auras économiser du fric parce qu'il n'y a pas besoin d'un 2e de remplacement et tu arriveras à l'heure. Maintenant je vous laisse attribuer à chaque groupe sa citation: [08][08][08][08] -Typhoon, F-35 et F-22. -Su-30MK, Su-35BM, Su-29SMT, SU-35. -Rafale, Gripen et peut-être Super Hornet.

Lien vers le commentaire
Partager sur d’autres sites

Bah il suffit de mettre la seconde ligne à la place de la troisième est on tout dans l'ordre. Avec un détail, tu achètes quand même un second appareil parce non seulement il est bon et pas cher mais en plus il est beau dans chacune des livrées [30]

Lien vers le commentaire
Partager sur d’autres sites

C'est vrai que ça commence vraiment à atteindre des sommets!! Ils auraient vraiment intérêt à le vendre au Japon pour réduire les prix!! Cela dit, le F-35 va sans doute dépasser les 150 voire 160M$ sur les premières séries, donc, niveau rapport qualité/prix, selon l'utilisation que l'on en fait, c'est plus ou moins idem. Notons que le prix du Super Hornet est celui donné pour le marché US, il sera un peu moins cher pour l'exportation (il faut enlever le coût du développement, et ajouter une marge plus grande pour le constructeur), dans les 80/90M$ selon les variantes et les options.

Lien vers le commentaire
Partager sur d’autres sites

environ 100 pour les australiens, mais avec support et tout le reste je crois. En prix fly away, je crois qu'ils sont à 79 millions de dollars, il me semble que j'avais lu ça sur le site de la Navy. Par contre european, c'est au moins la 5e fois que tu ressors ce schéma...

Lien vers le commentaire
Partager sur d’autres sites

Bah ça dépend ce que tu veux dans ton prix val!! Juste l'appareil (avec radar et moteur) c'est autour de 80M$. Dès que tu rajoute les radars et moteurs de rechange pour la durée de vie, plus les pièces de rechange et le support, tu table dans les 100M$, et si en plus tu compte l'armement, la formation etc etc... tu peux trés vite tomber sur du 150M$ à l'unitée. Tout dépend du type de contrat, de ce qu'il implique, de quel pays le signe (les comptabilités sont différentes selon les pays). Le Super Hornet hors tout, c'est 80M$ environ (avec la marge de l'avionneur). Mais l'Australie à payé les siens près de 192M$ l'unité!!! Entretien, armement, entrainement, formation etc tout compris!!

Lien vers le commentaire
Partager sur d’autres sites

Les NACESs pour les USA sont pour des nouvaux F18s, non? Et les NACESs pour la Canada est pour leur F18s en service?

Pentagon Contract Announcement

(Source: US Department of Defense; issued May 30, 2007)

Martin-Baker Aircraft Co., Ltd., Middlesex, England is being awarded a $39,723,124 firm-fixed-price contract for 172 Navy Aircrew Common Ejection Seats (NACESs), including 70 for the Navy F/A-18E/F and E/A-18G; 20 for the Navy T-45; 22 for the Marine Corps F/A-18A+; and 60 for the Government of Canada. 

In addition, this contract provides for associated component parts and production support for the U.S. Navy production aircraft and the Government of Switzerland. 

Work will be performed in Middlesex, England (71.5 percent); Johnstown, Pa. (16 percent); Northridge, Calif. (7 percent); and Ronkonkoma, N.Y. (5.5 percent), and is expected to be completed in December 2008. 

Contract funds will not expire at the end of the current fiscal year. This contract combines purchases for the U.S. Navy and Marine Corps ($26,497,206; 66.70 percent) and the governments of Canada ($13,116,369; 33.02 percent) and Switzerland ($109,549; .28 percent) under the Foreign Military Sales Program. This contract was not competitively procured. 

The Naval Air Systems Command, Patuxent River, Md., is the contracting activity (N00019-07-C-0011). 

-ends-

Link: www.defense-aerospace.com

Lien vers le commentaire
Partager sur d’autres sites

A propos le NACES.

Navy Aircrew Common Ejection Seat

(NACES)

Martin-Baker was awarded the NACES contract by the US Navy in May 1985. The intent of the programme was to develop a high performance, high technology ejection seat which would integrate with several aircraft types, thus providing a significant commonality benefit for the customer. Four aircraft types were initially specified: A-6, F-14, F-18 and T-45. The A-6 variant was subsequently cancelled.

The most comprehensive seat test programme ever undertaken by Martin-Baker, involving about 120 ejections over a wide range of conditions, has resulted in a seat design which is extremely well proven and very reliable. Initial testing was conducted at Martin-Baker's own test sites in the UK. Thereafter most of the testing was conducted at the US Navy Weapons Centre, China Lake, California which provides rocket track and flight vehicle test facilities. Here the seat was tested at extreme speeds and altitudes, as well as under more benign conditions to check various cockpit integrations.

The first production standard NACES flew in an F-14D in February 1990, and since then more than 1100 seats have been delivered to the US Navy, most of which are now in service. Deliveries continue at a regular rate each month to support overseas sales of the F-18 and the new variant of super Hornet which is about to enter service.

1992 saw the first two live ejections of the NACES. The first was from a T-45 during its landing run and the second from an out-of-control F-18 aircraft. Both ejections were completely successful and the pilots were able to return to flight duties very quickly. NACES has a 100 percent recovery record in service.

Image IPB

GENERAL SEAT LAYOUT

The basic design of the NACES (Mk14 seat) has been developed from the Mk10 seat, which it replaces in the earlier versions of US F-18 aircraft, and the Mk12 seat produced for the British Aerospace Harrier GR5.

The main structure of the seat comprises two vertical beams located at the rear, to which all the other major subassemblies are attached. The sitting platform or "bucket" is mounted on the front of the beams using sliding attachments, which allow approximately 6 inches of vertical travel to provide crewman sitting height adjustment. The seat interfaces to the aircraft cockpit via the ejection catapult which is positioned between the main beams. The catapult is the device which propels the seat from the cockpit when ejection is initiated. It consists of a two-part telescopic tube, the outer part of which (the barrel) remains with the aircraft, while the inner piston tube is ejected with the seat. The catapult is operated by pyrotechnically pressurising the tube, forcing the two parts to telescope apart, thus ejecting the seat from the cockpit. This provides the first 39 inches of propelled seat travel and accelerates the seat to a velocity of about 55 ft/sec in 180 ms. A solid propellant rocket motor attached to the underside of the seat ignites as the seat separates from the catapult barrel, accelerating the seat at approximately 10 G's for a further 250 ms. The combined impulse imparted by the catapult and rocket motor is designed to give the seat a zero height /zero speed operating capability.

40 ms after the seat separates from the catapult the seat drogue is deployed. The drogue system is designed to stabilise the seat in the pitch and yaw axes, and to provide rapid deceleration. The drogue is packed inside a canister mounted at the top of the seat. Deployment is achieved very rapidly and positively by pyrotechnically launching the cylinder from the seat. The drogue is attached to the seat at three points on the rear of the seat by means of a stabilising bridle, thus maintaining the seat in a "face into wind" orientation which is physiologically beneficial. The seat "flies" under the drogue for a period of time which is governed by the flight conditions at the time of ejection, varying from a few milliseconds to about 3 minutes.

At a time determined by the ejection flight conditions the drogue is jettisoned and the main parachute is deployed, with the crewman being simultaneously released from the seat. The parachute is deployed very positively by a tractor rocket, which tows the assembly from its stowage container at the top of the seat. The parachute inflates rapidly, decelerating the crewman to a safe velocity for landing.

The automatic functions of the seat after it has left the aircraft are controlled by the seat electronic sequencer. This is an autonomous device which remains dormant during normal flight operations. When the seat is ejected, thermal batteries are fired to power up the sequencer. The flight conditions of speed and altitude are measured using seat-mounted sensors as soon as the seat has separated from the aircraft and this information is used by the sequencer to determine the appropriate automatic sequence timings. The sequencer activates the seat devices by electrically initiating pyrotechnic cartridges.

ELECTRONIC SEQUENCER

The NACES sequencer is the world's first and only production ejection seat digital electronic controller. All previous Martin-Baker seats are controlled entirely by pyrotechnic or mechanical devices activated by mechanical (clockwork) timers, supplemented in a few cases by pyrotechnic timers. Whilst such technology has provided safe and reliable operation for many thousands of seats, it has limitations of performance, which can be critical under certain adverse ejection conditions. The very precise timing control of seat automatic functions offered by a digital electronic device, combined with the opportunity to provide much improved responsiveness to a wide range of ejection conditions, so improving crewman survival rates, has been the primary motivation behind the development of the NACES sequencer.

The sequencer hardware and software has been designed and built by Teledyne Electronic Safety Products. However, it has been Martin-Baker's responsibility to define the operational requirements, event timings and decision look-up table contents, which are the most critical elements in the design of the sequencer.

Lien vers le commentaire
Partager sur d’autres sites

  • 2 weeks later...
  • 4 weeks later...

Des nouvelles nouvelles du radar AESA du F18 (APG 79) maintenant autorisé en production de série :

les points marquants: 8000+ heures de vol pour ce radar avec les 84 systèmes construits à prsésent, 96% de disponibilité, 7 fois plus fiable que le radar mécanique qu'il remplace.

By Chuck Wagner

Program Executive Office for Tactical aircraft

The U.S. Navy’s next-generation aircraft radar system was approved for full-rate production June 25.

Following extensive review by the office of the Assistant Secretary of the Navy (Research, Development and Acquisition), PMA-265 was granted authorization to enter into Full Rate Production for 437 next-generation APG-79 Active Electronically Scanned Array (AESA) radars.

“Super Hornet Block II and EA-18G aircraft equipped with AESA’s revolutionary war fighting capability makes Naval Aviation more relevant than ever in our history to the joint combatant commander. Our Super Hornets and Growlers - with cutting edge radar technology, precise and networked enabled weapons in combination with joint interoperable and open architectures - increases the combat effectiveness of all those operating in the battle space,” said Capt. “BD” Gaddis, PMA-265 Program Manager.

This major program milestone marks the end of a Low Rate Production (LRIP) period of 84 radars that began with delivery of the first LRIP 1 unit in July 2003.

The AESA program started in 1999 and the radar had its first flight in July 2003. The program completed an operational evaluation in December 2006 and will commence follow-on test and evaluation later this summer in preparation for first deployment in 2008.

“With more than 8200 flight hours on LRIP hardware in the past 2 years, AESA system hardware has been extremely reliable and maintainable,” said Shirley Franko, AESA program co-lead. “With its highly advanced built-in-test capability and no moving parts to fail, the system boasts an operational availability of 96 percent.”

To date the AESA radar has proven to be seven times more reliable than the legacy system it replaces, and program officials expect this figure to increase in the future.

AESA systems are currently flying in four Fleet squadrons and have impressed aircrew and maintenance users on both coasts, said Franko.

“This cutting-edge radar is a critical enabler for Block II Super Hornets,” said Cmdr. John Green, AESA program lead “A total of 437 Block II Super Hornets will have AESA radars, bringing advanced capabilities and improved reliability to the Fleet.”

Australia is also procuring 24 F/A-18F Block II Super Hornet equipped with AESA, Green added.

Advanced capabilities include cruise missile defense, an enhanced SAR-mapping capability, extended air-to-air range, and an interleaved mode capability that allows air-to-air and air-to-ground modes to be used simultaneously, a particularly useful mode in two-seat aircraft, said Green.

VFA-213, in Oceana, VA, was the first operational unit to stand up as an AESA-equipped F/A-18F squadron in October 2006 and VFA-22, in Lemoore, CA, is currently transitioning to AESA-equipped F/A-18F aircraft. Both squadrons have initiated a training regimen that will prepare them for deployment with AESA in 2008.

http://pao.navair.navy.mil/press_releases/index.cfm?fuseaction=home.view&Press_release_id=3734&site_id=15
Lien vers le commentaire
Partager sur d’autres sites

  • 2 months later...

Créer un compte ou se connecter pour commenter

Vous devez être membre afin de pouvoir déposer un commentaire

Créer un compte

Créez un compte sur notre communauté. C’est facile !

Créer un nouveau compte

Se connecter

Vous avez déjà un compte ? Connectez-vous ici.

Connectez-vous maintenant
  • Statistiques des membres

    6 003
    Total des membres
    1 749
    Maximum en ligne
    pandateau
    Membre le plus récent
    pandateau
    Inscription
  • Statistiques des forums

    21,6k
    Total des sujets
    1,7m
    Total des messages
  • Statistiques des blogs

    4
    Total des blogs
    3
    Total des billets
×
×
  • Créer...